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The plastic instability approach has been applied to the tensile behaviour of a continuous 
fibre composite. It is shown that the combination of two components with different 
strengths and degrees of work-hardening produces a new material with a new degree of 
work-hardening, which may be determined by the present analysis. Expressions for the 
elongation at rupture and the strength of a composite have been obtained and the results 
of the calculation are compared with some experimental data. 

t. Introduction 
The starting point for many treatments, pub- 
lished in the last four or five years, of the 
strength of continuous fibre composites, is the 
relationship analysed by Kelly and Tyson [1 l, 

~, = ( 1  -- Vf)~," a t0  ~< V~ ~< Vf, (1) 

~, = V~G,' + (I -- V0~rm" at V~, ~< Vf ~< 1 (2) 

Here l~ is volume fraction of fibres, or,' and %" 
are ultimate tensile strength of fibres and matrix 
respectively, crm" is the matrix stress at the mo- 
ment when the fibres are broken and ~, = tZ,min 
at V~ = Vf,. 

These formulae are valid for brittle fibres only; 
the line AOB in fig. 1 corresponds to that case. 
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Figure I Schematic diagram for strength - volume fraction 
dependence. 
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However, most results obtained for metal-metal 
fibre composites have been interpreted as a 
confirmation of the so-called law of mixtures, 
because usually they have not shown a minimum 
point like O in fig. 1. It would then seem that the 
relation between composite strength and volume 
fraction was approximately linear. It will be 
shown here that the application of plastic 
instability theory to fibre composites explains the 
reason for this deviation from the behaviour 
predicted by Kelly and Tyson. Furthermore, 
experimental data are compared with the 
predictions of the theory. 

2. Plastic Instability of a Composite 
Material 

We considered the case when both the matrix and 
the reinforcing fibre have some ductility. The 
ultimate tensile strength of a homogeneous, 
ductile material is determined by the condition of 
plastic instability [2]. The nominal stress 
cr = Q / A o  reaches the maximum value ~, when a 
rod achieves an unstable state, that is necking 
begins. (Q is load, A0 is initial value of cross- 
sectional area A). I f  the stress/strain curve 
expressed in true co-ordinates, 

s = Q / A ,  ~ = In l / lo 

is approximated by a power function 

= ( s / s , )  ~ (3) 

where s,  and n are constants, then assuming 

�9 1969 Chapman and Hall Ltd. 



S T R E N G T H  A N D  D U C T I L I T Y  O F  C O N T I N U O U S  F I B R E  C O M P O S I T E S  

incompressibility of material, we obtain the 
equation for conventional stress/true strain in 
the form 

= s ,  d/~ exp (--  e).  (4) 

The maximum nominal stress a ,  is reached at 
,e = %, which is determined by the condition 
de/de = 0. This condition and equation 4 give 

e ,  = 1 /n .  

Therefore all the constants in approximation 3 
:are expressed by values which are obtained in a 
tensile test: 

n = 1/%, s,  = a , e ,  -e* exp e,  . 

Now we can rewrite expression 4 in the form 

e = ~, (E/e,) ~* exp(e, -- e). (5) 

Usually e,  is approximately equal to the strain 
at rupture although this is not true for all 
materials. In general the neck develops after the 
critical point is reached, on the falling part of a 
stress/strain curve. This process is not described 
by the present approach. 

We shall now consider the behaviour of a 
fibre composite material. We assume that the 
bond between fibre and matrix is an ideal one. 
The necking of any one component is impossible 
without necking of  the composite as a whole. 
The second assumption is that expression 3 is 
valid to some strain beyond %. The stress/strain 
curve of the matrix is characterised by the 
constants o-," and %", and similarly for the 
fibres by a , '  and e, ' .  I f  the stress and strain of  
the composite are cr and e, then we have 

a =  Vf r + ( 1 - -  Vr) a" (6) 

e = e' = e" (7) 

a = Vf % '  (e/e, ') ~*'exp(e,' -- e) 
+ (1 - -  VO ~,"  (e/e,")  ~*" exp (e," - e). (8) 

Equation 8 which gives the stress/strain curve of 
the composite is a consequence of equations 5 
to 7. 

Differentiating the expression 8 with respect to 
e we obtain an equation for the determination of 
the critical strain e,  of the composite, 

~ ~, ' (e/e, ' )  ~*' ( e , ' / e ' ,  - -  1) exp e , '  + 
(l -- V0 a ,"  (e/e,)~*"(e,"/e, -- 1) exp e," = 0 .  

(9)  

This equation is non-linear with respect to e,,  
but it is linear in V~. Hence it is more convenient 
to use the following form: 

Vf = 

where 

E, - e, '  ,-e,. (10) 
tt e ~  e* 1 + B E  * - e ,  

e , ~ e ,  "e*" exp e , '  
= ,,. ( l l )  

O' ,  E ,  te*r e x p  E ,  

It can be shown that e , ' <  E, < e,", if 
e , ' < % "  and 0 <  V~< 1, i.e. the critical 
deformation of the composite is larger than that 
for separate fibres. As we have assumed above 
that the strength of the fibre-matrix interface is 
sufficient to prevent the fibre necking without 
necking of the composite as a whole, the result 
obtained implies that achievement of the maxi- 
mum on the stress/strain curve of the fibre at 
e = E,' is not accompanied by the beginning of 
composite necking. In short, the more stable 
matrix restrains the less stable fibre. The 
stress/strain curve of the fibre follows equation 5 
up to the moment of necking of the composite, 
i.e. the homogeneous stable strain of the fibre 
reaches a value e, > e, ' .  This situation is 
illustrated by fig. 2. The falling part of the curve 
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Figure2 Schematic diagramsforfibre and matrix combined 
in composite and for composite, The dotted lines corres- 
pond to behaviour of fibre and matrix tested separately. 

for separate fibres is shown by the dotted line, 
the solid line corresponds to the behaviour of the 
fibre in the composite. It is very important to 
note that at the critical composite strain e = e,  
the composite stress has achieved a maximum 
value c~,, but the fibre stress has passed beyond 
the maximum point; also on the portion of the 
curve between e , '  and e, there is some loading of 
the hardening matrix and some unloading of the 
fibre. 

We are now able to determine the ultimate 
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stress of a composite, cr,, which corresponds to 
the critical value of deformation E = E,. From 
equation 8 we obtain 

where 

% ---- Vf A'cr,' + (1 -- Vd A" o-,", (12) 

A' = (e , /%')  ~*' exp(e, '  -- % ) ,  
A" = e x p  ( , , "  - . , ) .  

Formula 12 is illustrated in fig. 2. It gives the 
dependence of  the composite's ultimate strength 
on the ultimate strength and critical deformation 
of matrix and fibre. It  is easy to show in the case 
%' = %", that the composite strengths corre- 
spond to line AB in fig. 1. All the curves for 
% ' <  E," lie lower than AB. Strictly, this 

0'4 
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analysis may not be applied to the case of brittle 
fibres because of assuming the power function 
approximation, 3. However, the physical situation 
is clear and it is possible to conclude that the 
whole family of the curves lies within AOB. 

3. Comparison with Experiments 
The comparison of the above calculations and 
experimental results obtained by A. Markov 
et al [3] for a monofilament Ni -W composite at a 
temperature of 400 ~ C is given in figs. 3a and b. 
The results of calculations for the experimental 
data on strength and ductility of silver-stainless 
steel wire at room temperature obtained by 
H. Piehter [4] are shown in figs. 4a and b. The 
results for a Cu-Mo composite at room tempera- 
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Figure 3 Crit ical strain (a) and the st rength (b) of composi te  Ni -W at t e m p e r a t u r e  400 ~ C as a funct ion of vo lume f ract ion.  
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(b) 
Figure 4 Crit ical  strain (a) and strength (b) of s i lver -s ta in less  steel c o m p o s i t e  at room t e m p e r a t u r e  as a funct ion of 
vo lume  f ract ion.  Exper imenta l  data  by H. R. P ieh ler  [4]. 
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ture by A. Kelly and W. R. Tyson [1] are 
compared with the theory in fig. 5. 
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Figure 5 Crit ical strain of C u - W  compos i te  at room 
temperature as a funct ion of  vo lume fract ion.  Experi- 
mental data by A. Kelly and W. R. Tyson  [1]. 

The good agreement between theory and 
experiment in figs. 3a, 4a and 5 indicates that it is 
possible to use 3 to describe the behaviour of the 
individual components until a plastic instability 
of the composite commences in a tensile test. 

It is clear that the best comparison may be 
obtained for the elongation at rupture because 
more precise calculation of the strength demands 
consideration of  a complex stress state of  
composite form. 

4. Conclusions 
The present approach, based on the plastic 
instability theory predicts a more real behaviour 
of  the components in composite materials. Good 

agreement with experimental data has been 
obtained for the elongation at rupture. 

5. List of Symbols 
V f = v o l u m e  

S 

Q =  
A =  

A 0 = 

fraction of  fibres in 
composite. 
true strain of  fibre, matrix and 
composite. 
true stress. 
nominal stress on fibre, matrix and 
composite. 
critical stress of fibre, matrix and 
composite (ultimate tensile 
strength). 
critical slrain of separate fibre and 
matrix. 
critical strain of  composite. 
external load. 
cross-sectional area. 
initial value of area. 
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